• çź€äœ“äž­æ–‡
  • 한ꔭ얎
  • Deutsch
Fluigent
  • Research
      • Flow EZℱ microfluidic flow controller
      • Microfluidic Instruments
        • Omi, automated organ-on-chip platform
        • Automated Sequential Injection System
        • Microfluidic Pressure Based Flow Controller
        • Microfluidic Sensors
        • Microfluidic Valves
        • Sample Reservoirs
        • Microfluidic Pressure Sources
        • Microfluidic Chips
        • Accessories
      • Software Solutions
        • Custom Software Development
        • Real-Time Control & Automation Software
      • Microfluidic Packs
        • Encapsulation Platform for FACS
        • Microfluidic Complex Emulsion Platform
        • Microfluidic Application Packs
        • Microfluidic Starter Packs
      • Research Applications
        • Microfluidics for Cell Analysis
        • Microfluidics for Organ-on-chip Cell culture
        • Microfluidics for Cell Biology
        • Microfluidics for Droplet Generation
      • Subscribe to the newsletter
  • Industrial
      • Microfluidic OEM Devices
        • Microfluidic OEM Components
        • Customizable OEM Flow Control Modules
      • Fully custom microfluidic device customization design microfluidic
      • Technologies
        • 5 reasons to choose OEM pressure controllers over OEM syringe pumps for microfluidic applications
        • Microfluidic recirculation system 
        • DFC, “Self-Learning” Microfluidic Flow Control Algorithm
        • Non-Intrusive Flow Sensing Technology
        • Compact All-In-One Microfluidic Micropump
      • Industrial Applications
        • Localization microscopy and flow control for multiplexing 
        • Contamination-free Liquid Handling System
        • Microfluidic Drug Discovery 
        • Flow Expertise for Cell Encapsulation and Single-Cell Analysis
        • Droplet Digital PCR (ddPCR)
      • Subscribe to the newsletter
  • Markets & Applications
    • Microfluidics in Life Science
    • Microfluidics for Pharmaceutical Applications
    • Microfluidics for Food testing & Agriculture
    • Microfluidics in Cosmetics
    • Microfluidics in Water analysis
  • Company
    • About us
    • Fluigent’s brand ambassadors
    • Team
    • News
    • Events
    • Fluigent Newsletter
    • Careers
  • Resources & Support
      • Expert Reviews: Basics of Microfluidics
        • Microfluidics tips
        • Industrial / OEM Microfluidic Expertise
        • What is microfluidics?
        • Advantages of pressure-based microfluidics
        • Elements of a microfluidic system
        • Concepts and physics of microfluidics
        • Droplet and particle generation in microfluidics
        • Microfluidic cell biology
        • Funded research program participation
      • FAQ
      • Videos
        • Expertise videos
        • Product presentation videos
        • Tutorial videos
      • Expertise
        • Videos
        • Paper highlights
        • Microfluidic Application Notes
        • Microfluidics case studies
        • Microfluidic Webinars
        • Interviews & Testimonials
        • Microfluidics White Papers
      • Documentation
        • CAD
        • Microfluidic Instruments Catalog
        • User manuals
        • Technical datasheets
        • Safety datasheet
        • Fluigent product icons & images
      • Microfluidic Calculators
        • Shear Stress Calculator
        • Pressure & Flow Rate Calculator
        • Droplet Size Calculator
      • Download software
        • OxyGEN
        • Software Development Kit
        • Discontinued software
      • Subscribe to the newsletter
  • Webshop
  • Contact us

Extended capabilities of pressure driven flow for microfluidics applications

Flow Stability

1. Cell perfusion and shear stress

Fluid shear stress is the tangential component of frictional forces generated at a surface (e.g., the vessel wall) by the flow of a viscous fluid (e.g., blood), and affects the physiology of the cells1. Conventional static cell culture does not allow reproducing such phenomenon while microfluidic is rising as an efficient tool for studying cell behavior under perfusion2.

Depending on the field of application, shear stress-related flow requirements can be different. Some studies exclude this parameter and other researchers are trying to reproduce in-vivo shear stress conditions. In both cases, precise and pulseless flow control is critical for repeatable results. While peristaltic pumps and syringe pumps generate pulsatile and unstable flows, pressure-driven pumps have shown the best performance.

2. Stable flow for monodisperse droplet generation

Droplet microfluidics has quickly become a central field of interest among the countless number of possibilities provided by microfluidics. As a femtoliter scale reactor3 with high-throughput processing capabilities (tens to thousands of hertz production), droplet microfluidics brings a promising future compared to ”L scale 384 well plates. Biochemical analysis based on droplet microfluidics has been successfully reported (Droplet microfluidics in (bio)chemical analysis) and several companies have introduced dPCR systems in the market.

High scale emulsion production is well established in huge industries such as food, cosmetics, and particle synthesis but batch production has its limitations and in-line continuous droplet production provides many advantages:

  • Continuous production
  • Easy scalability with parallelization capability
  • Highly monodisperse droplet generation
  • Precise and flexible control of droplet size

In microfluidic devices, droplet size and generation rate are directly linked to the flow rates of the two phases4. The injection flow rate stability is thus critical for having repeatable reactor volume and reproducible results. Pressure pumps provide a more stable flow profile leading to better experimental data or production results.

Complex flow profile generation

The responsiveness of a pump is critical for many microfluidic applications.

Indeed, when an experiment needs to simulate biological or mathematical flow profiles, a highly responsive pump is necessary to generate sine waves, ramps, or aortic pressure-based flow profiles for instance.

Such flow profiles require ultra-fast responsiveness to be generated in a controlled way. Syringe pump technologies are not responsive enough to achieve such performance. A response time comparison between a high-precision syringe pump and the LineUP series of Fluigent (see figure) shows that it would be impossible to achieve a standard heartbeat pulsation simulation at 80bpm.

Check the OxyGEN software for automated protocol creation

1. Cost effective solution for sequential injection in cell perfusion application

Many microfluidic applications require switching between multiple solutions (such as samples or buffers) while maintaining a constant flow rate during the course of their experiment. The use of a single pressure pump (such as Fluigent’s LineUP, or MFCS series) associated with a sequential valve provide a high performance and compact solution in cell perfusion applications.

2. Flow rate and pressure monitoring

While Syringe pumps deduce the perfusion flow rate from a piston displacement, a pressure pump is generally associated with a flow sensor. When a microfluidic channel is clogged, a syringe pump continues to perfuse leading to an increase of pressure or leakages and in the worst case to the burst of the chip. The LineUP system is controlling and monitoring both pressure and flow rate with an easy way of limiting the pressure and/or flow rate. Many customers use our pumps for quality checks after chip production by monitoring pressure and flow rate while flowing the recently produced chip. Also, one could use these monitoring features as a control while an experiment is running.

Cell-Perfusion-System

For the complete application note, go to :
www.fluigent.com/resources-support/expertise/application-notes/cell-perfusion-with-pulse-free-flow-with-one-manifold/

References

  1. Chiu, J. and Chien, S. (2011). Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiological Reviews, 91(1), pp.327-387.
  2. Lu, H. et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem.76, 5257–5264 (2004).
  3. Leman M, Abouakil F, Griffiths AD, Tabeling P. Droplet-based microfluidics at the femtolitre scale. Lab Chip. 2015 Feb 7;15(3):753-65. doi: 10.1039/c4lc01122h.
  4. SY Teh, R Lin, LH Hung, AP Lee. Droplet microfluidics. Lab on a Chip, 2008

Related products

  • Fluigent Compact vacuum pump
    Compact Vacuum Pump Read
  • microfluidic pressure source
    Compact Pressure Source  Read
  • pack recirculation products
    Microfluidic Recirculation Pack Read
  • perfusion package products
    Immunostaining Pack Read
  • Mechanical Stimulation Pack Read
  • pressurized Bottle CAPs fluigent
    Airtight pressurized bottle caps Read
  • Electrical Impedance Spectroscopy Pack Read
  • Micropipette Aspiration Package
    Micropipette Aspiration Package Read
  • microfluidic flow control system
    Microfluidic Flow Control System Read
  • Microfluidic OEM Pressure Controller Read
  • microfluidic pressure source
    OEM Microfluidic Pressure Source Read
  • Pressurized fluid reservoirs
    Microfluidic Pressurized Fluid Reservoirs Read
  • Custom microfluidic device
    Fully Custom Microfluidic Device Read
  • cell sorting microfluidic pack
    Microfluidic Size Cell Sorting Pack Read

For more information or a technical discussion

Contact us
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-BicĂȘtre

Research

  • Microfluidic Research Applications
  • Instruments
  • Software solutions
  • Packages

Industrial

  • Products

Resources

  • Microfluidic Application Notes
  • Microfluidics case studies
  • Expert Reviews: Basics of Microfluidics
  • Interviews & Testimonials
  • Microfluidic Webinars

Support & tools

  • Documentation
  • Download software

Company

  • About us
  • Team
  • Events
  • Newsletter
  • Careers

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy