Non-intrusive flow sensing technology

Fluigent has developed the first calibration-free and non-intrusive flow sensing technology dedicated to micro- and milli-fluidic applications (patent pending). It is well suited for biological applications that require a sterile environment, or droplet microfluidics applications where different fluids are used. This technology is designed to be integrated into pressure-based fluidic systems, and works with Fluigent solutions. It combines sensing and pneumatic elements with well known Fluigent regulation algorithms

This technology can be integrated in any custom project.
Benefit from the best performance and Fluigent expertise for your project.

  • Contact-free: suitable for use when sterility is required
  • No calibration needed: liquid-independent
  • Suitable for Industrial use: can be integrated into many devices and systems
  • High precision and accuracy: Fluigent regulation control
Non-intrusive flow sensing technology schematic

Working principle of the non-intrusive flow sensing technology

Fluigent expertise for fluid flow rate adapted to gas flow rate

Thanks to Fluigent’s expertise, including “self-learning” algorithms and calibrations, the fluid flow rate is determined from gas flow rate measurements. Using internally developed software, the input pressure is automatically adjusted by our pressure controller to monitor or control the liquid fluid flow rate in real-time. (Fig 1: Non-intrusive flow sensing technology principle)

Non-intrusive flow sensing technology principle
non-intrusive flow sensing development

The technology consists of a uniquely engineered assembly of sensing, pneumatic and electronic elements that allow for precise volumetric flow rate measurement. Thanks to the conception of a zero leakage (completely sealed) system, the gas flow rate is proportional to the fluid flow rate. (Fig 2: Fluigent engineered technology)

No contact with the fluidic path

As described in figure 3, the technology is located at the pneumatic part of the system, between the regulated pressure controller and the fluidic reservoir (for more information about pressure-based flow control, see our expertise page). The flow sensing technology is never in contact with fluids. (Fig 3: Non-intrusive flow sensing Integration Principle)

intrusive vs non intrusive flow sensing

No fluid-calibration needed

Traditional microfluidic flow sensing technologies are based on a calorimetric measurement principle and depend on fluid properties. They are generally calibrated for aqueous fluids, and additional calibrations need to be performed by the user. As explained above, with the new device the fluid flow rate is determined by measuring the gas flow rate and is independent of the fluid properties (density, viscosity, surface tension…). It makes this flow sensing technology universal and fluid calibration-free.

This is a technology of choice if one:

  • Is working in a sterile/contamination-free environment
  • Is working with several types of fluid: aqueous fluids (e.g. as water, media, PBS), blood, plasma, oils, surfactants, alcohols …
  • Performs continuous operations with slow flow response time needs

A non-intrusive flow sensing technology unlocking new features

Contactless flow sensing technologyTraditional thermal flow sensing technology
Invasivenessnon-invasiveinvasive: connected to the fluidic path
Fluid calibrationnot required – liquid independantrequired flow fluids with viscosity different than water
Maximum working pressure2 bar> 15 bar
Response time> 10 s< 1 s
Flow stabilityExcellentExcellent

Applications of the non-intrusive flow sensing technology

Emerging point of care applications make use of more complex fluidic operations and require compact systems. Our technology is an excellent fit for such applications as it is fully connected and provides excellent fluidic performance while being compact.

  • Cell biology: biological applications such as cell culture under perfusion, immunostaining, organoid culture, organ on a chip, drug discovery, single-cell analysis, cell cytometry and other applications that require a sterile environment. When using fluids such as culture media, PBS, buffers, blood, or plasma, every component in the fluidic path should be disposable, or able to be sterilized. Fluigent’s new sensing technology is ideal for such applications as it is not contact with the fluids in play.
  • Microfluidic droplet generation: When generating droplets, several types of fluids with different properties are used (aqueous solutions, oil, surfactants, alcohols…). Using traditional flow sensing technology requires fluid calibration to be performed for every fluid. This step should be repeated periodically as fluid properties can differ from one batch to another. Inaccurate calibration affects the flow rate and the size of the droplets. The new sensing technology is ideal as no fluid calibration step is required, allowing one to precisely control flow rate for all types of liquids.
  • (bio)chemical and molecular analysis: Chemical and molecular components can be screened using droplet microfluidic technology for drug, enzyme, or food analysis. The advantages of using this non-intrusive flow sensing technology are listed above.
  • Quality monitoring and system failure prevention: using a flow sensor allows to monitor in real time the fluidic protocol, and warn the user from unexpected flow rate fluctuations.

For more information or a technical discussion

Contact us