• 简体中文
  • 한국어
  • Deutsch
Fluigent
  • Research
      • Flow EZ™ microfluidic flow controller
      • Microfluidic Research Equipment
      • Microfluidic Instruments
        • Omi, an Automated Organ-On-A-Chip Platform
        • Aria, An Automated Perfusion System  
        • Microfluidic Pressure Based Flow Controller
        • Microfluidic Sensors
        • Microfluidic Valves
        • Pressure Control Reservoirs
        • Microfluidic Pressure Sources
        • Microfluidic Chips
        • Microfluidic Accessories
      • Software Solutions
        • Lab Integration Software
        • Real-Time Control & Lab Automation Software 
      • Microfluidic Packs
        • UV-crosslinked microcapsule production platform 
        • Encapsulation Platform for FACS
        • Microfluidic Complex Emulsion Production Platform
        • Microfluidic Application Packs
        • Microfluidic Starter Packs
      • Research Applications
        • Microfluidics for Cell Analysis
        • Microfluidics for Organ-on-chip Cell culture
        • Microfluidics for Droplet Generation
        • Microfluidics for Cell Biology
      • Subscribe to the newsletter
  • Industrial
      • Microfluidic OEM
      • Microfluidic OEM Devices
        • Microfluidic OEM Components
        • Customizable OEM Flow Control Modules
      • Fully Custom Microfluidic Device
      • Custom microfluidic device
      • Technologies
        • A Microfluidic Pressure Controller Comparison for Your Ultimate Fluid Control System
        • 5 reasons to choose OEM pressure controllers over OEM syringe pumps for microfluidic applications
        • Microfluidic recirculation system 
        • DFC, “Self-Learning” Microfluidic Flow Control Algorithm
        • Non-Intrusive Flow Sensing Technology
        • Compact All-In-One Microfluidic Micropump
        • Liquid Stirring Solutions
      • Industrial Applications
        • Combining Microfluidics and Spectroscopy
        • Valve Automation with the F-OEM for Microfluidic Applications
        • Localization microscopy and flow control for multiplexing 
        • Contamination-free Liquid Handling System
        • Microfluidic Drug Discovery 
        • Flow Expertise for Cell Encapsulation and Single-Cell Analysis
        • Droplet Digital PCR (ddPCR)
      • Subscribe to the newsletter
  • Markets & Applications
    • Microfluidics in Life Science
    • Microfluidics for Pharmaceutical Applications
    • Microfluidics for Food testing & Agriculture
    • Microfluidics in Cosmetics
    • Microfluidics in Water analysis
  • Company
    • About us
    • Fluigent’s Academic Partners
      • Scientific Partners
      • Fluigent’s Brand Ambassadors
      • Center Partners
    • Team
    • News
    • Events & Webinars
    • Fluigent Newsletter
    • Fluigent’s Distributors
    • Careers
  • Resources & Support
      • Expert Reviews: Basics of Microfluidics
        • General Overview of Microfluidics
        • Advantages of Pressure-Based Microfluidics
        • Microfluidics tips
        • Droplet & Particle Generation
        • Microfluidic Cell Biology
        • Industrial / OEM Expertise
        • Funded Research Program
      • FAQ
      • Videos
        • Expertise videos
        • Product presentation videos
        • Tutorial videos
      • Expertise
        • Videos
        • Microfluidics Article Reviews
        • Microfluidic Application Notes
        • Microfluidics Case Studies
        • Interviews & Testimonials
        • Microfluidics White Papers
      • Documentation
        • CAD
        • Fluigent Catalog
        • Fluigent products manual
        • Fluigent Products Datasheets
        • Safety datasheet
        • Fluigent Media Kit product icons & images
      • Microfluidic Calculators
        • Shear Stress Calculator
        • Pressure & Flow Rate Calculator
        • Droplet Size Calculator
      • Download software
        • FEZ and Link Firmware Updater​
        • OxyGEN
        • Software Development Kit
        • Discontinued software
      • Subscribe to the newsletter
  • Webshop
  • Contact us
Home » Resources » Expertise » Expert Reviews: Basics of Microfluidics » General Overview of Microfluidics » Automation in Microfluidics: Real-Time Monitoring and Feedback Loops

Automation in Microfluidics: Real-Time Monitoring and Feedback Loops

As the field of microfluidics continues to evolve, automation is becoming essential for achieving precise, reproducible, and high-throughput results. Manual operation often falls short due to human variability and the need for constant adjustments. Automation in microfluidics combines advanced hardware and intelligent software to enable precise fluid handling with minimal user intervention. By introducing automated control, real-time flow monitoring, and adaptative feedback, these systems ensure consistency and high-performance microfluidic workflows.

From manual challenges to automated solutions in microfluidics 

Traditional microfluidic experiments require constant adjustments to maintain stability in pressure or flow rate. Manual calibration introduces variability and slows down workflows, reducing experimental throughput and reproducibility. Even small variations can affect mixing efficiency, shear stress, or cell viability, which are critical in applications like organ-on-a-chip and long-term cell culture  

Automation in microfluidics addresses these challenges by combining precise hardware with intelligent software control. Pressure controllers, valves, and flow sensors work together with real-time feedback algorithms to continuously monitor and adaptatively correct experimental parameters. When deviations occur, the system adjusts in real time, maintaining the target flow or pressure without any user intervention.  

examle of automated microfluidic system

Figure 1. A control system for automated operation of microfluidic devices1 

Fluigent is leading this transition toward automated microfluidic systems. Its suite of instruments, including the LineUp Series, MFCS Series, and Aria, enables automated and remote-controlled fluid handling. These platforms allow users to execute complex microfluidic protocols with minimal supervision, ensuring reproducibility and reducing human error.  

To extend this flexibility even further, Fluigent provides a dedicated Software Development Kit (SDK) for advanced automation and system integration. The SDK enables the precise control of all Fluigent instruments through custom programs written in Python, LabVIEW, C++, C#, or MATLAB. The SDK includes practical examples ranging from basic operations, such as reading sensor data or setting pressure (fgt_get_sensorValue, fgt_set_pressure), to more advanced routines involving synchronized regulation and valve control. These examples make it easy to design customized automated workflows and integrate Fluigent devices into larger laboratory systems.  

Learn more about SDK 

Real-time monitoring and feedback loops: enabling smart and adaptative microfluidics 

At the core of automation in microfluidics lies the ability to monitor and adjust conditions in real time. By using integrated pressure and flow sensors, automated systems can detect deviations instantly and correct them through closed-loop feedback control, ensuring stable and reproducible experimental conditions.  

Fluigent’s OxyGEN software plays a central role in this process. It continuously tracks pressure and flow rate from connected instruments and sensors, displaying them live while also adjusting system parameters. In an automated loop, OxyGEN can respond to any change, like clogging or fluid resistance, by automatically adjusting the pressure to maintain the target flow rate.  

This process relies on Fluigent’s Direct Flow Control (DFC) algorithm. By combining flow sensors with responsive algorithms, DFC continuously compares measured flow rates to desired setpoints and dynamically adjusts the applied pressure to compensate for fluctuations. This microfluidic feedback loop ensures precise control even when environmental or sample conditions change, which is ideal for long-term perfusion or droplet-based applications.  

feedback loop. example of Automation in Microfluidics

Figure 2. Operating principle of the microfluidic flow rate control algorithm. Both pressure and flow rates are monitored, and DFC automatically adjust pressures to maintain the target values.  

Beyond simple monitoring, OxyGEN includes a Protocol Editor that automates complex microfluidic sequences. Users can create step-by-step routines directly within the software, define timing, loop operations, and conditional responses, and even simulate protocols before running them on actual hardware. This helps transform manual workflows into reproducible, automated protocols.  

For example, in a recirculation experiment, OxyGEN controls valve positions to alternate flow direction and maintain constant fluid volume in the circuit during long-term cell culture.  If flow resistance changes, DFC instantly compensates by adjusting pressure to maintain a stable rate. This fully automated feedback loop minimizes human intervention and ensures continuous, reliable perfusion over hours or days. 

Automation in Microfluidics protocol

Figure 3. OxyGEN interface for recirculation protocol running 

recirculation loop

Figure 4. Fluid going back and forth between the two reservoirs during recirculation 

Learn more about the Microfluidic Recirculation System  

Applications and case studies of automation in microfluidics

The impact of automation in microfluidics extends across multiple domains, from biomedical research to chemical synthesis. Automated microfluidic systems are transforming workflows by improving control over delicate biological or chemical environments. 

Organ-on-a-chip and cell culture 

Automation is essential for maintaining stable physiological conditions in organ-on-a-chip and cell culture applications. Continuous perfusion replicates in vivo environments, ensuring cell viability and long-term stability.  

Fluigent’s pressure-based flow controllers, combined with OxyGEN software, enable precise regulation of perfusion in real time over several weeks. Changes in flow resistance or fluid properties resulting from cellular growth are instantly compensated, maintaining optimal flow throughout the experiment.  

For compact and fully integrated automation, the  Omi platform combines pressure control, real-time monitoring, and adaptive feedback in a single incubator-compatible device. Omi supports long-term cell perfusion and recirculation with minimal user intervention, ensuring reproducibility across experiments. 

These automated systems have been successfully implemented in multi-organ models, demonstrating precise flow control across connected chambers to mimic inter-organ interactions. 

Automated platform for long-term cell culture

Figure 5. Automated platform for long-term cell culture in tumor research with Fluigent components: I-LineUp Link Module; II-LineUp PushPull (±1000/–800 mbar); III-LineUp Switch EZ; IV-two Switch modules; V-three 15 mL Pressure CAP HP reservoirs.2  

Learn more on:  

Liver-Kidney organ-on-a-chip model using the Omi dual platform 

Microfluidic artery-on-a-chip using the MFCS 

Drug delivery and automated screening 

In pharmaceutical research, automated microfluidic workflows enable drug formulation, delivery, and screening in a reproducible way. Fluigent’s LineUp series, combined with OxyGEN software, allows for precise and automated preparation and delivery of drug formulations. For example, in the preparation of drug-loaded liposomes, automated control ensures consistent mixing ratios, flow rates, and encapsulation conditions, critical parameters for efficacy and size distribution.  

This is especially valuable in high-throughput drug screening, where multiple compounds must be tested across varying concentrations and conditions. Automated systems can easily switch between solutions, maintain stable flow, and adapt to experimental feedback, ensuring reliable and repeatable results.  

Learn more on:  

Drug-loaded Liposome preparation using microfluidics 

Drug screening case study 

Automated immunofluorescence and staining protocols 

Automated microfluidic systems have transformed how immunostaining and immunofluorescence assays are performed. Traditional staining requires manual pipetting, long incubation times, and precise timing, steps that can introduce human error.  

Fluigent’s Aria and microfluidic valves automate injection and rinse sequences with high precision. This ensures reproducible reagent distribution and saves valuable time.  

Automated immunostaining is particularly beneficial for delicate samples such as neuronal or tissue cultures, where consistency in timing and reagent concentration is critical to obtaining clear, reproducible fluorescence signals. 

Learn more on: 

Automated Immunofluorescence Application Note 

Neuronal Cell Immunofluorescence Application Note 

Droplet microfluidics  

Droplet-based microfluidic workflows rely on precise synchronization between multiple fluid streams. Small flow variations can influence droplet size, frequency, or encapsulation efficiency. 

Fluigent’s automated flow control solutions, using the DFC algorithm, ensure stable and consistent droplet formation, a key factor for single-cell analysis, drug screening, or material synthesis. 

These systems simplify multi-channel droplet experiments, allowing researchers to run precise and long-term protocols with minimal supervision. 

Learn more: Encapsulation and culture for single cell sequencing 

Future perspectives: From automation to artificial intelligence  

The integration of artificial intelligence (AI) represents the next evolution in microfluidic control. AI-driven systems could analyze real-time sensor data, predict deviations, and adjust parameters before instability occurs, achieving predictive control instead of reactive feedback.  

Recent studies demonstrate the feasibility of integrating machine learning algorithms with automated microfluidic systems. Machine learning models can already predict droplet size and optimize chip geometries in silico.3 

By combining data-driven algorithms, high-frequency sensors, and adaptive hardware, next-generation microfluidic systems will autonomously make experimental decisions, monitor performance, and even design optimized workflows, marking a shift toward intelligent, self-regulated microfluidic labs. 

workflow of a developed design automation tool

Figure 6. The workflow of a developed design automation tool for flow-focusing droplet generators, called DAFD.3 

Conclusion

Automation in microfluidics is transforming how laboratories conduct experiments. By integrating precision hardware, smart algorithms, and real-time feedback, automated systems deliver consistency, scalability, and efficiency unmatched by manual operation. 

Fluigent’s hardware and software ecosystem, including the MFCS, Flow EZ, OxyGEN, DFC algorithm, and Omi platform, exemplifies this transformation. Together, they create fully automated and reproducible microfluidic setups, enabling researchers to focus on science rather than system management.   

Discover our range of flow control instruments

flow ez microfluidic flow and pressure controller

Microfluidic flow controller

Read more
FLOW UNIT microfluidic flow sensor

Bidirectional Microfluidic Flow Sensor

Read more

Real-Time Control & Lab Automation Software 

Read more
microfluidic flow control system

Microfluidic Flow Control System

Read more
ARIA automated perfusion system

Aria, An Automated Perfusion System  

Read more
Automated Multiplexed Imaging Platform

Automated Multiplexed Imaging Platform

Read more

Omi, an Automated Organ-On-A-Chip Platform

Read more
pack recirculation products

Microfluidic Recirculation Pack

Read more
Flow-Rate-Platform

Microfluidic Flow Rate Platform

Read more
Fluigent L Switch microfluidic recirculation AND injection valve

Microfluidic Recirculation Valve

Read more
M-SWITCH™, Fluigent Microfluidic Bidirectional Valve

M-SWITCH™ Microfluidic bidirectional valve 

Read more

Expertises & Resources

  • Microfluidics Article Reviews An automated microfluidic platform for investigating mutation accumulation Read more
  • Product presentation videos MICROFLUIDIC VALVE AUTOMATION: How to make it easy [SWITCH EZ] – Fluigent Read more
  • Tutorial videos OxyGEN Automations Protocols: Container Blocks for Loops and Conditions Read more
  • Microfluidic Application Notes Development of a human gut-on-chip to assess the effect of shear stress on intestinal functions Read more
  • Microfluidic Application Notes Peristaltic Pump vs Pressure-Based Microfluidic Flow Control for Organ on Chip applications Read more

For more information or a technical discussion

Contact us
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-Bicêtre

Research

  • Microfluidic Research Applications
  • Instruments
  • Software solutions
  • Packages

Industrial

  • Products

Resources

  • Microfluidic Application Notes
  • Microfluidics Case Studies
  • Expert Reviews: Basics of Microfluidics
  • Interviews & Testimonials

Support & Tools

  • Documentation
  • Download software

Company

  • About us
  • Team
  • Events & Webinars
  • Newsletter
  • Fluigent’s Distributors
  • Careers

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy