skip to Main Content


Reserve your space for one of our free Webinars to learn about basic and advanced microfluidic topics, get tips and techniques for your lab, or find out more about new technologies and products. The Webinars will cover a range of topics including particle/droplet formation, microfluidic basics, applications in cell biology, and more.

The live presentations will include the opportunity to question our specialists via chat. If you can’t attend a presentation – past Webinars are available for on-demand viewing.

Upcoming Webinars

Fast impedance spectroscopy for characterization and counting

The webinar will be aired on Thursday October, 19th


The webinar will be aired on Thursday November, 12th

A new chip for microfluidic generation of double emulsion

The webinar will be aired on Thursday November, 17th

All our webinars will be aired at:

  • 5PM Central European Summer Time
  • 11AM Eastern Time
  • 8AM  Pacific Time

Please note that a replay will be available the day after the live presentation but registration is mandatory.

Register now

Past, On-Demand Webinars

Concepts of microfluidics

This webinar aims to provide a broad introduction to microfluidics by introducing the attendee to microfluidics and related physical principles. The webinar will also feature some typical applications

  • Understand the controlling principles of microfluidics and how to optimize them for your research field (life science, pharmaceutical, analytical chemistry …)
  • You are new to microfluidics and want to expand your overall knowledge of microfluidic systems and related physical principles.

Microfluidic concepts and challenges for the characterization and sorting of bioparticles

The webinar will be divided into two parts. The 1st part will present the research priorities and different microfluidic approaches of the department of Nanobiophotonics of the Leibniz-IPHT in Jena. The second will focus the work of Daniel Kraus, Ph.D. Student at Fluigent/Leibniz-IPHT, on image-based multispectral characterization and sorting of bioparticles: Bioparticles are ubiquity spread entities in nature, medicine and technology. The composition and quality of particles and especially bioparticles gaining increasingly importance in industrial production, material sciences and quality assurance. Morphological properties of particles such as size, diameter as well as spectral information are important quality features for the process control and particle identification. The aim of image-based on-chip spectral classification is to achieve higher accuracy and higher throughput of samples compared to conventional methods.

Scientific applications:

  • microfluidic synthesis of nanoparticles
  • digital PCR
  • droplet generation + sorting
  • image-based flow cytometry
  • microfluidic spectral characterization and sorting of bioparticles

Automate cell studies with Aria

Get the success you deserve with Fluigent’s new perfusion system, Aria that takes care of fluid delivery for you.
If your experiments require precise timed delivery of reagents, probes, fluorophores, etc. while minimizing operator interaction, look no further than our new generation instrument for automating cellular perfusion studies, Aria.
Based on input from our customers, protocols requiring delivering more than one solution demand large amounts of time to set up, as well as significant operator interaction. The Aria provides rapid experimental setup, ease of use, and can automate even multi-day protocols. It can interface with many microscopes to further simplify the process of reagent delivery and imaging.

Drug encapsulation in biocompatible microparticles for drug delivery

In pharmaceutical area, Active Pharmaceutical Ingredient (API) encapsulation into biodegradable and biocompatible polymers is widely used for producing new smart Drug Delivery Systems.  The goal of these drug delivery systems is to supply doses of drugs for a sustained period of time at target specific sites in the body. This can be achieved by efficiently loading drugs into microparticles which will protect the API during physiological transport and release it when the microparticles have reached their specified target location(s).  To regulate the release of the drug, it is critical to controllably produce microparticles with known sizes and a homogeneous size distribution as the rate of drug release is proportional to microparticle size.

Among all techniques available for microparticle production, microfluidic and droplet based microfluidic ones appear as the best solutions to precisely control microparticle production in term of size, API loading and encapsulation efficiency.

In this webinar, we discussed how microfluidics can allow API encapsulation into biocompatible and biodegradable microparticles for drug delivery.

Raydrop, a universal droplet generator based on a non-embedded co-flow-focusing

Most commercial microfluidic droplet generators rely on the planar flow-focusing configuration implemented in polymer or glass chips. The planar geometry, however, suffers from many limitations and drawbacks, such as the need of specific coatings or the use of dedicated surfactants, depending on the fluids in play. On the contrary, and thanks to their axisymmetric geometry, glass capillary-based droplet generators are a priori not fluid-dependent. Nevertheless, they have never reached the market because their assembly requires art-dependent and not scalable fabrication techniques. Here we present a new device, called Raydrop, based on the alignment of two capillaries immersed in a pressurized chamber containing the continuous phase. The dispersed phase exits one of the capillaries through a 3D-printed nozzle, placed in front of the extraction capillary for collecting the droplets. This non-embedded implementation of an axisymmetric flow-focusing is referred to co-flow-focusing.

Experimental results demonstrate the universality of the device in terms of the variety of fluids that can be emulsified, as well as the range of droplet radii that can be obtained, without neither the need of surfactant nor coating. Additionally, numerical computations of the Navier-Stokes equations based on the quasi-steadiness assumption are shown to correctly predict the droplet radius in the dripping regime and the dripping-jetting transition when varying the geometrical and fluid parameters.In the context of a growing demand of controlled droplets in many areas, the Raydrop emerges therefore as a very robust and versatile solution easily implementable in laboratories with little experience and facilities in microfluidics.

Towards a universal flow sensor for microfluidics

With the development of microfluidics and its applications in life sciences, the need for disposable sensors capable of measuring flow rates over wide ranges and without prior calibration steps has increased. However, commercially available flowmeters or those reported in the literature only partially meet these specifications. The aim of this Ph.D. work has been to address these needs thanks to an innovative measuring principle: a microscopic wheel driven by the liquid motion.

In this webinar we first presented the manufacturing processes implemented, based on the photopolymerization of a photosensitive liquid. As we predicted a linear response of the sensor, independent of the liquid viscosity, and varying according to the wheel radius, we compared the results obtained experimentally to the theoretical model. Then, we discussed the measured wheel movement fluctuations, phenomena that were not initially predicted. Finally, based on a new model that describes the deformation of a microfluidic channel, we discussed the influence of flow asymmetries and the wheel confinement on its rotation.

Back To Top