• 简体中文
  • 한국어
  • Deutsch
Fluigent
  • Research
      • Flow EZ™ microfluidic flow controller
      • Microfluidic Instruments
        • Omi, automated organ-on-chip platform
        • Automated Sequential Injection System
        • Microfluidic Pressure Based Flow Controller
        • Microfluidic Sensors
        • Microfluidic Valves
        • Sample Reservoirs
        • Microfluidic Pressure Sources
        • Microfluidic Chips
        • Accessories
      • Software Solutions
        • Custom Software Development
        • Real-Time Control & Automation Software
      • Microfluidic Packs
        • Encapsulation Platform for FACS
        • Microfluidic Complex Emulsion Platform
        • Microfluidic Application Packs
        • Microfluidic Starter Packs
      • Research Applications
        • Microfluidics for Cell Analysis
        • Microfluidics for Organ-on-chip Cell culture
        • Microfluidics for Cell Biology
        • Microfluidics for Droplet Generation
      • Subscribe to the newsletter
  • Industrial
      • Microfluidic OEM Devices
        • Microfluidic OEM Components
        • Customizable OEM Flow Control Modules
      • Fully custom microfluidic device customization design microfluidic
      • Technologies
        • 5 reasons to choose OEM pressure controllers over OEM syringe pumps for microfluidic applications
        • Microfluidic recirculation system 
        • DFC, “Self-Learning” Microfluidic Flow Control Algorithm
        • Non-Intrusive Flow Sensing Technology
        • Compact All-In-One Microfluidic Micropump
      • Industrial Applications
        • Localization microscopy and flow control for multiplexing 
        • Contamination-free Liquid Handling System
        • Microfluidic Drug Discovery 
        • Flow Expertise for Cell Encapsulation and Single-Cell Analysis
        • Droplet Digital PCR (ddPCR)
      • Subscribe to the newsletter
  • Markets & Applications
    • Microfluidics in Life Science
    • Microfluidics for Pharmaceutical Applications
    • Microfluidics for Food testing & Agriculture
    • Microfluidics in Cosmetics
    • Microfluidics in Water analysis
  • Company
    • About us
    • Fluigent’s brand ambassadors
    • Team
    • News
    • Events
    • Fluigent Newsletter
    • Careers
  • Resources & Support
      • Expert Reviews: Basics of Microfluidics
        • Microfluidics tips
        • Industrial / OEM Microfluidic Expertise
        • What is microfluidics?
        • Advantages of pressure-based microfluidics
        • Elements of a microfluidic system
        • Concepts and physics of microfluidics
        • Droplet and particle generation in microfluidics
        • Microfluidic cell biology
        • Funded research program participation
      • FAQ
      • Videos
        • Expertise videos
        • Product presentation videos
        • Tutorial videos
      • Expertise
        • Videos
        • Paper highlights
        • Microfluidic Application Notes
        • Microfluidics case studies
        • Microfluidic Webinars
        • Interviews & Testimonials
        • Microfluidics White Papers
      • Documentation
        • CAD
        • Microfluidic Instruments Catalog
        • User manuals
        • Technical datasheets
        • Safety datasheet
        • Fluigent product icons & images
      • Microfluidic Calculators
        • Shear Stress Calculator
        • Pressure & Flow Rate Calculator
        • Droplet Size Calculator
      • Download software
        • OxyGEN
        • Software Development Kit
        • Discontinued software
      • Subscribe to the newsletter
  • Webshop
  • Contact us

Microfluidic white paper - A review of Organ on Chip Technology 

What are Organs-on-Chips (OoC)? How are they built? What are the single- and multi-OoC models currently available? What are the most common applications? In this expert white paper, we provide a comprehensive review of Organ on Chip technology.

Introducing Organs on Chips 

An Organ on a Chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. Organ on Chip models in microfluidically supported biochips offer the possibility to more precisely regulate the environmental conditions critical to the growth of individual cell types. Miniaturized biochips allow for control of nutrition supply and removal of cellular waste products or secondary metabolites accumulating within the culture medium. Furthermore, oxygenation levels, hydrostatic pressure or shear stress can be adjusted to control such aspects as maintenance of cell layers’ barrier integrity and control of cell migration in vitro. 

By reproducing the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable real-time high-resolution imaging and in vitro analysis of the biochemical, genetic, and metabolic activities of living cells in a functional context of tissues and organs. In the context of drug discovery and development, OoC devices should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing, and biomarker identification. 

This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. Therefore, our goal in this review of Organ on Chip technology is to help you learn more about the details of this promising technology, from its theoretical basis and the different technology models in use, the many advantages and alternatives associated with its use, and the state of the art and recent advances, to its various applications in academia and the pharmaceutical industry. 

A guide to Organs-on-chips (OoC) technology

Download the white paper

* Required field.


“We have a collaboration with Fluigent in an ANR with UTC where we want to parallelize organ-on-a-chip systems in order to test different drugs or different concentrations of drugs.”

Nathalie Maubon | CEO HCS Pharma

omi organ models development

A REVIEW OF ORGAN ON CHIP TECHNOLOGY: TABLE OF CONTENTS 

I. What are “Organs-on-chips” (OoC)?

  1. Definition
  2. Applications

II. Why use OoC models?

  1. “Breaking the in vitro impasse”
  2. An alternative to animal models – 3R principle
  3. Advantages of OoC models
  4. Technical challenges

III. What are the current OoC technologies available?

  1. Materials used for OoC devices
  2. OoC layouts classically used to recreate organ functions
  3. Perfusion systems to deliver physiological flow
  4. Mechanical stimulation
  5. Readouts and sensors of physiological responses

IV. What kind of cells are used to create OoC?

  1. Cell lines
  2. Primary cells from human donors
  3. Human iPS (induced pluripotent stem cells)
  4. Fragmented Organoids
  5. Human biopsies

V. What are the current single OoC models available?

  1. Example 1: Lung-on-a-chip – The first OoC
  2. Example 2: Gut-on-a-chip
  3. Example 3: Tumor-on-a-chip

VI. How to combine several OoC to create a “body-on-chip”?

  1. Multiplexing of single OoC
  2. Multiple organs into a single plate (multi-OoC plates)
  3. Challenges of the multi-OoC field

VII. Applications of OoC in academia and pharmaceutical industry

  1. Towards an OoC rather than an in vitro validation experiment?
  2. Drug development (Efficacy and Safety)
  3. Pre-clinical ADME-Tox assay
  4. Personalized medecine

VIII. Conclusion

References

Related content

  • Omi organ-on-a-chip platform for micro physiology experiment and cell culture

    A one-of-a-kind innovative Organ-on-Chip Platform

    Read more
  • organ on chip webinar

    WEBINAR: An one-of-a-kind Organ-on-chip platform

    Read more
  • Microfluidic Application Notes

    Development of a human gut-on-chip to assess the effect of shear stress on intestinal functions

    Read more
  • Expert Reviews: Basics of Microfluidics

    Why is a controlled shear-stress a key parameter of your microfluidic experiments? 

    Read more
  • Expert Reviews: Basics of Microfluidics

    How to reproduce active biomimetic stimulation in vitro?

    Read more
  • CELL PERFUSION PACK

    The perfect set for a high throughput cell perfusion

    Read more
  • Cell perfusion pack

    The perfect set for organ on chip perfusion.

    Read more

Related products

  • pack recirculation products
    Microfluidic Recirculation Pack Read
  • Mechanical Stimulation Pack Read

For more information or a technical discussion

Contact us
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-Bicêtre

Research

  • Microfluidic Research Applications
  • Instruments
  • Software solutions
  • Packages

Industrial

  • Products

Resources

  • Microfluidic Application Notes
  • Microfluidics case studies
  • Expert Reviews: Basics of Microfluidics
  • Interviews & Testimonials
  • Microfluidic Webinars

Support & tools

  • Documentation
  • Download software

Company

  • About us
  • Team
  • Events
  • Newsletter
  • Careers

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy