• 简体中文
  • 한국어
  • Deutsch
Fluigent
  • Research
      • Flow EZ™ microfluidic flow controller
      • Microfluidic Research Equipment
      • Microfluidic Instruments
        • Omi, an Automated Organ-On-A-Chip Platform
        • Automated Perfusion System for Spatial Omics 
        • Microfluidic Pressure Based Flow Controller
        • Microfluidic Sensors
        • Microfluidic Valves
        • Pressure Control Reservoirs
        • Microfluidic Pressure Sources
        • Microfluidic Chips
        • Microfluidic Accessories
      • Software Solutions
        • Lab Integration Software
        • Real-Time Control & Lab Automation Software 
      • Microfluidic Packs
        • UV-crosslinked microcapsule production platform 
        • Encapsulation Platform for FACS
        • Microfluidic Complex Emulsion Production Platform
        • Microfluidic Application Packs
        • Microfluidic Starter Packs
      • Research Applications
        • Microfluidics for Cell Analysis
        • Microfluidics for Organ-on-chip Cell culture
        • Microfluidics for Droplet Generation
        • Microfluidics for Cell Biology
      • Subscribe to the newsletter
  • Industrial
      • Microfluidic OEM
      • Microfluidic OEM Devices
        • Microfluidic OEM Components
        • Customizable OEM Flow Control Modules
      • Fully Custom Microfluidic Device
      • Custom microfluidic device
      • Technologies
        • A Microfluidic Pressure Controller Comparison for Your Ultimate Fluid Control System
        • 5 reasons to choose OEM pressure controllers over OEM syringe pumps for microfluidic applications
        • Microfluidic recirculation system 
        • DFC, “Self-Learning” Microfluidic Flow Control Algorithm
        • Non-Intrusive Flow Sensing Technology
        • Compact All-In-One Microfluidic Micropump
        • Liquid Stirring Solutions
      • Industrial Applications
        • Combining Microfluidics and Spectroscopy
        • Valve Automation with the F-OEM for Microfluidic Applications
        • Localization microscopy and flow control for multiplexing 
        • Contamination-free Liquid Handling System
        • Microfluidic Drug Discovery 
        • Flow Expertise for Cell Encapsulation and Single-Cell Analysis
        • Droplet Digital PCR (ddPCR)
      • Subscribe to the newsletter
  • Markets & Applications
    • Microfluidics in Life Science
    • Microfluidics for Pharmaceutical Applications
    • Microfluidics for Food testing & Agriculture
    • Microfluidics in Cosmetics
    • Microfluidics in Water analysis
  • Company
    • About us
    • Fluigent’s Academic Partners
      • Scientific Partners
      • Fluigent’s Brand Ambassadors
      • Center Partners
    • Team
    • News
    • Events & Webinars
    • Fluigent Newsletter
    • Fluigent’s Distributors
    • Careers
  • Resources & Support
      • Expert Reviews: Basics of Microfluidics
        • General overview of microfluidics
        • Advantages of pressure-based microfluidics
        • Microfluidics tips
        • Droplet & Particle Generation
        • Microfluidic cell biology
        • Industrial / OEM Expertise
        • Funded research program
      • FAQ
      • Videos
        • Expertise videos
        • Product presentation videos
        • Tutorial videos
      • Expertise
        • Videos
        • Microfluidics Article Reviews
        • Microfluidic Application Notes
        • Microfluidics case studies
        • Interviews & Testimonials
        • Microfluidics White Papers
      • Documentation
        • CAD
        • Fluigent Catalog
        • Fluigent products manual
        • Fluigent Products Datasheets
        • Safety datasheet
        • Fluigent Media Kit product icons & images
      • Microfluidic Calculators
        • Shear Stress Calculator
        • Pressure & Flow Rate Calculator
        • Droplet Size Calculator
      • Download software
        • FEZ and Link Firmware Updater​
        • OxyGEN
        • Software Development Kit
        • Discontinued software
      • Subscribe to the newsletter
  • Webshop
  • Contact us
Home » Resources » Expertise » Microfluidic Application Notes » Single cell sorter microfluidic platform

Single cell sorter microfluidic platform

Accurate and high throughput cell sorting is critical for enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high-efficiency sorting in short timescales, advances in microfluidics have enabled the use of miniaturized devices offering similar capabilities that exploit a variety of physical principles.

Single cell sorter microfluidic platforms provide numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microfluidic chip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing (1).

To demonstrate the separation of particle mixtures, a solution containing 7.5 µm and 15 µm diameter polystyrene particles labeled with FITC and TRITC fluorophores was used. The particle streams were viewed and captured separately using appropriate filter cubes.

Download the application note

This applications note was made in collaboration with microfluidic ChipShop

MCS_Logo

Sorting of 15 and 7 micrometer diameter bead using a microfluidic platform

Benefits of cell sorting 

In many fields of biology, biotechnology, and medicine, isolating and sorting cells from complex, heterogeneous mixtures is a crucial task. Cell sorting is frequently used to enrich or purify cell samples into well-defined populations to increase productivity in research and development applications. Cell sorting also serves as the first step in many diagnostic and therapeutic practices (1). 

The need to sort cells is rapidly expanding toward the isolation of rarer target cell populations, including the enrichment of circulating tumor cells (CTCs), hematopoietic stem cells (HSCs), and circulating fetal cells (CFCs) from blood (4). 

What is a single cell sorter passive system ? 

Single cell sorting platform passive systems consist of a variety of methods that do not rely on fluorescent labels or beads. Instead, these methods rely on the inherent differences in cellular morphology between cell groups (e.g., size, shape, compressibility, and density) and can sort cells using inertial forces, hydrodynamic spreading, deterministic lateral displacement, etc. 

In a single cell sorter with a passive system, channels with spiral shapes are used to separate particles according to their size based on the Dean forces. The main benefit of this design is high throughput (>1.5 mL/min). Fluigent and microfluidic ChipShop validated an effective and commercial solution for cell sorting.  

Single cell sorter microfluidic platform
Figure 1: a) Channel cross-section and illustration of the effects of lift (FL) and Dean forces (FD). The position at which particles of different sizes equilibrate depends on the ratio FL/FD. b) Schematic drawing of spiral sorter Fluidic 382. The randomly dispersed particles equilibrate at different equilibrium positions along the inner wall of the spiral microchannel. 

How to confirme the good seperation of particle mixtures ? 

To demonstrate the separation of particle mixtures in the single cell sorting platform, a solution containing 7.5 µm and 15 µm diameter polystyrene particles labeled with FITC and TRITC fluorophore was used. The particle streams were viewed and captured separately using appropriate filter cubes. 

commercial solution for cell sorting
Table 1: Advantages and disadvantages of cell sorting using FACS and microfluidics
More about the cell sorting package

How to perform single cell sorting 

Starting sorting experiments – Materials

cell sorting microfluidic pack

Microfluidic Size Cell Sorting Pack

Microfluidic Size Cell Sorting Pack

Read more
flow ez microfluidic flow and pressure controller

Microfluidic flow controller

Flow EZ™

Read more
FLOW UNIT microfluidic flow sensor

Bidirectional Microfluidic Flow Sensor

FLOW UNIT | FLOW UNIT +

Read more

Reagents:

Fluorescently labelled polystyrene particles purchased from Bangs Laboratories. 7.3 µm (+/- 0.53 µm) with red fluorescence and 15.25 µm (+/- 0.669 µm) with green fluorescence.

Optics

The surfaces are monitored using an inverted microscope (Eclipse Ti-U, Nikon) in bright field or in fluorescence mode. For the acquisition of the fluorescent beads, we use the software NIS-Elements with standard Nikon filter cubes for FITC and TRITC.

What is the method employed to sort single cells? 

The 7.3 µm and 15.25 µm fluorescent microbeads are mixed and diluted in DI water before testing to reach a concentration of ~1.105 beads/mL. In order to make the single cell sorter, the Flow EZ is connected to the reservoir containing the mixture using a P-CAP. The reservoir is connected to the inlet of the microfluidic device using tubing of 500 µm inner diameter (ID). Tubing passes through the Flow Unit to control and monitor flow rate. Tubing is connected to the outlets of the microfluidic device to recover the beads. The flow rate is set using the Flow EZ. Here, sorting units 2 and 3 with flow rates of respectively 1.5 mL/min and 150 µL/min are used. The particle streams were viewed and captured separately using TRITC and FITC filter cubes.  

microfluidic single cell sorter setup
Figure 2: a) Complete system b) Schematic of the system c) Close up of the microfluidic chip

High-Throughput Separation and Sorting of Fluorescent Microbeads  

A homogeneous mixture of 7.3 µm and 15.25 µm fluorescent microbeads are injected into the central inlet of the single cell sorter using flow rates of 1.5 mL/min for unit 2 and 150 µL/min for unit 3. Figure 3 clearly indicates the formation of two distinct particle streams, confirming that 7.3 and 15 µm microbeads are well separated. In addition, as predicted (2) we observe the larger particles (green fluorescence, 15 µm) closer to the inner channel.  

In figure 4, the green fluorescence particles are the majority collected at the first and second outlets of the microfluidic device, while red fluorescence particles are collected at the fourth outlet of the same sorting unit.  

This result confirms that 7.3 µm and 15 µm particles are well separated and subsequently sorted by the microfluidic device with very high throughput. 

sorting-unit-and-result
Figure 3: Composite images illustrating the position of the 15 µm (green fluorescence), and 7.3 µm (red fluorescence) diameter particles in the channel section prior to the outlet of unit 3 of the microfluidic device. Flow rate: 1.5 µL/min – 150 µL/min.
fluorescence-cell sorting
Figure 4: Composite images illustrating the position of the 15 µm (green fluorescence), and 7.3 µm (red fluorescence) diameter particles in the channel section at the outlet of unit 2 of the microfluidic device. Flow rate: 1.5 mL/min

Conclusion

In this application note, we introduced a commercially-available single cell sorter microfluidic system to perform a passive size separation of a microparticle mixture.  

The system includes a spiral-shaped microfluidic device from microfluidic ChipShop and pressure-based flow controllers from Fluigent. Tuning Dean and lift forces induced by spiral microchannels allow users to obtain distinct particle streams and subsequently sort particles according to their sizes. Beads with diameters of 15 and 7.3 µm were successfully sorted using flow rates of 150 µL/min and 1.5 mL/min.  

We provide an easy to use, versatile, and cost-effective single-cell sorter for particle-size sorting. 

Related Resources

  • BACTERIAL ENCAPSULATION FACS WEBINAR MICROFLUIDICS

    WEBINAR: Encapsulation of fluorescent bacteria in double emulsions for FACS sorting 

    Discover
  • cell encapsulation webinar

    WEBINAR: Single cell encapsulations compatible with FACS sorting, API encapsulations in biocompatible polymers, and more

    Discover
  • Expert Reviews: Basics of Microfluidics

    Application of microfluidic chip technology 

    Discover
  • Expert Reviews: Basics of Microfluidics

    High Throughput Single Cell Analysis

    Discover
  • Expert Reviews: Basics of Microfluidics

    Micropipette aspiration of cells and tissues

    Discover

Related products

  • cell sorting microfluidic pack
    Microfluidic Size Cell Sorting Pack Read

For more information or a technical discussion

Contact us
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-Bicêtre

Research

  • Microfluidic Research Applications
  • Instruments
  • Software solutions
  • Packages

Industrial

  • Products

Resources

  • Microfluidic Application Notes
  • Microfluidics case studies
  • Expert Reviews: Basics of Microfluidics
  • Interviews & Testimonials

Support & Tools

  • Documentation
  • Download software

Company

  • About us
  • Team
  • Events & Webinars
  • Newsletter
  • Fluigent’s Distributors
  • Careers

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy