• 简体中文
  • 한국어
  • Deutsch
Fluigent
  • Research
      • Flow EZ™ microfluidic flow controller
      • Microfluidic Research Equipment
      • Microfluidic Instruments
        • Omi, an Automated Organ-On-A-Chip Platform
        • Aria, automated Perfusion System  
        • Microfluidic Pressure Based Flow Controller
        • Microfluidic Sensors
        • Microfluidic Valves
        • Pressure Control Reservoirs
        • Microfluidic Pressure Sources
        • Microfluidic Chips
        • Microfluidic Accessories
      • Software Solutions
        • Lab Integration Software
        • Real-Time Control & Lab Automation Software 
      • Microfluidic Packs
        • UV-crosslinked microcapsule production platform 
        • Encapsulation Platform for FACS
        • Microfluidic Complex Emulsion Production Platform
        • Microfluidic Application Packs
        • Microfluidic Starter Packs
      • Research Applications
        • Microfluidics for Cell Analysis
        • Microfluidics for Organ-on-chip Cell culture
        • Microfluidics for Droplet Generation
        • Microfluidics for Cell Biology
      • Subscribe to the newsletter
  • Industrial
      • Microfluidic OEM
      • Microfluidic OEM Devices
        • Microfluidic OEM Components
        • Customizable OEM Flow Control Modules
      • Fully Custom Microfluidic Device
      • customization design microfluidic
      • Technologies
        • A Microfluidic Pressure Controller Comparison for Your Ultimate Fluid Control System
        • 5 reasons to choose OEM pressure controllers over OEM syringe pumps for microfluidic applications
        • Microfluidic recirculation system 
        • DFC, “Self-Learning” Microfluidic Flow Control Algorithm
        • Non-Intrusive Flow Sensing Technology
        • Compact All-In-One Microfluidic Micropump
        • Liquid Stirring Solutions
      • Industrial Applications
        • Combining Microfluidics and Spectroscopy
        • Valve Automation with the F-OEM for Microfluidic Applications
        • Localization microscopy and flow control for multiplexing 
        • Contamination-free Liquid Handling System
        • Microfluidic Drug Discovery 
        • Flow Expertise for Cell Encapsulation and Single-Cell Analysis
        • Droplet Digital PCR (ddPCR)
      • Subscribe to the newsletter
  • Markets & Applications
    • Microfluidics in Life Science
    • Microfluidics for Pharmaceutical Applications
    • Microfluidics for Food testing & Agriculture
    • Microfluidics in Cosmetics
    • Microfluidics in Water analysis
  • Company
    • About us
    • Fluigent’s Academic Partners
      • Scientific Partners
      • Fluigent’s Brand Ambassadors
      • Center Partners
    • Team
    • News
    • Events & Webinars
    • Fluigent Newsletter
    • Fluigent’s Distributors
    • Careers
  • Resources & Support
      • Expert Reviews: Basics of Microfluidics
        • General overview of microfluidics
        • Advantages of pressure-based microfluidics
        • Microfluidics tips
        • Droplet & Particle Generation
        • Microfluidic cell biology
        • Industrial / OEM Expertise
        • Funded research program
      • FAQ
      • Videos
        • Expertise videos
        • Product presentation videos
        • Tutorial videos
      • Expertise
        • Videos
        • Microfluidics Article Reviews
        • Microfluidic Application Notes
        • Microfluidics case studies
        • Interviews & Testimonials
        • Microfluidics White Papers
      • Documentation
        • CAD
        • Fluigent Catalog
        • Fluigent products manual
        • Fluigent Products Datasheets
        • Safety datasheet
        • Fluigent Media Kit product icons & images
      • Microfluidic Calculators
        • Shear Stress Calculator
        • Pressure & Flow Rate Calculator
        • Droplet Size Calculator
      • Download software
        • FEZ and Link Firmware Updater​
        • OxyGEN
        • Software Development Kit
        • Discontinued software
      • Subscribe to the newsletter
  • Webshop
  • Contact us
Home » Expertise » Expert Reviews: Basics of Microfluidics » Advantages of pressure-based microfluidics

Advantages of pressure-based microfluidics

In microfluidics, different types of flow delivery are used starting from the capillary forces, passing from the mechanical pumping and terminating by the new innovative techniques for fluid actuation such as the patented Fastab and LineUp. In this section, you will have access to all the information regarding the Microfluidic Stability and Responsiveness of the pressure based microfluidic and to a comparison between multiples flow control technologies on the market.
  • Search by name
Advantages of pressure-based microfluidics

Extended Capabilities of Pressure Driven Flow for Microfluidic Applications

Pressure driven flow is crucial in many microfluidic applications as it allows for precise and efficient control of fluid movement at the microscopic scale.

Read more
Advantages of pressure-based microfluidics

Flow control for droplet generation using syringe pumps and pressure-based flow controllers 

Droplet production using microfluidic systems was implemented for applications where monodispersity is of high importance. Syringe pumps are commonly used for generating droplets in microfluidic experiments, but can show limited flow control.. An alternative to syringe pumps are pressure-based flow controllers. 

Read more
flow control technology: pressure controller comparison
Advantages of pressure-based microfluidics

Microfluidic Flow Control: Comparison between peristaltic, syringe and pressure pumps for microfluidic applications 

To perform effective experiments in microfluidics, one needs to master the different flow control technologies available to use the most suitable way to control microfluidic flows. This article aims at presenting a short review of the existing techniques.

Read more
Kidney organoids cultured on a chip
Advantages of pressure-based microfluidics

Microfluidic pressure control for organ-on-a-chip applications: A comprehensive guide

This comprehensive guide will cover several essential definitions, advantages, and disadvantages of different technologies, considerations for choosing the right technology, and examples of OOC using Fluigent devices.

Read more
pump responsiveness in microfluidics
Advantages of pressure-based microfluidics

Pump Responsiveness in microfluidics 

 One syringe pumps drawback is the slow response time. However, achieving high responsiveness is crucial for the efficiency and reliability of microfluidic applications. 

Read more
Flow controller stability
Advantages of pressure-based microfluidics

The Importance of Flow Control Stability in Microfluidics 

This review compares different flow control systems (syringe pumps, peristaltic pumps, and pressure-based controllers) focusing on their performance in terms of stability and response times.

Read more
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-Bicêtre

Research

  • Microfluidic Research Applications
  • Instruments
  • Software solutions
  • Packages

Industrial

  • Products

Resources

  • Microfluidic Application Notes
  • Microfluidics case studies
  • Expert Reviews: Basics of Microfluidics
  • Interviews & Testimonials

Support & Tools

  • Documentation
  • Download software

Company

  • About us
  • Team
  • Events & Webinars
  • Newsletter
  • Fluigent’s Distributors
  • Careers

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy