Zellanalyse

The importance of flow control in cell analysis

Understanding cell behavior interaction with other cellular systems are the starting points for many studies. The analysis of cells as a population or at the single-cell level allows for a better understanding of cell behavior and can aid in biomedical research and drug discoveries. Researchers continuously seek new approaches to improve cell analysis techniques. Fluid flow control has many benefits including the ability to improve Next Generation Sequencing efficiency by encapsulating single cells inside pl microreactor droplets where cells can be tagged and then sequenced or drug formulations may be tested on an individual cell.
Main benefits
  • Better precision
  • Study at single-cell level
  • Non invasive techniques

Main applications

micropipette-aspiration

Biomechanics

An advantage of accurate fluid control is seen in micropipette aspiration. This method is a powerful non-invasive technique to evaluate how biomechanical properties of single cells or tissue govern cell shape, cell response to mechanical stimuli, transition from nontumorigenic to tumorigenic state or morphogenesis.

microfluidic cell sorting

Cell sorting

Many research applications call for sorting and isolating cells from a heterogeneous cell mixture. The need to isolate rare cells such as circulating tumor cells (CTCs) from blood samples increases the demand for cell sorting devices. As opposed to conventional instrumentation, microfluidic devices are easy to use, smaller, versatile, and affordable.

high throughput single cell analysis

High-throughput single-cell analysis

Analysis of healthy and diseased tissues, homogeneous at the macroscopic scale can reveal striking heterogeneities at cellular level. This variability is particularly well illustrated in polyclonal tumors which constantly undergo mutations. In this respect, single cell analysis is necessary to fully capture the complexity of such tissues.

Resources

Cell analysis experiments and fine fluid control

Single-cell analysis

Single-cell analysis allows one to study tissues at single-cell level. It impacts drug discovery for example as tumor tissues are composed of populations of different cells mutation it’s important to have the ability to test different drugs on each cell to understand their efficiency.

Working at cellular scale equally exposes many variations in gene expression: from specific biomarkers to insignificant delays in gene expression. High throughput analysis is then needed to multiply the number of profiled cells and discriminate relevant biomarkers from intrinsic population noise.

Droplet microfluidics is particularly well suited and extensively used for high throughput single-cell analysis: individual cells are isolated and confined at high speed in pico-volumes to analyze biological processes at the cellular level in this context having a precise control of the flow is a key parameter to have reproducible results.

Biomechanical studies

Microfluidics allows also for the monitoring and control of chemical or biological events for cell detection and sorting. Cell detection is generally performed using optical methods such as FACS (Fluorescent Activated Cell Sorting). Flow cytometry is the technique used to detect and measure physical and chemical characteristics of a population of cells or particles. This technique is widespread for cell analysis (size, shape and granularity)

Cell sorting

Microfluidics allows also for the precise monitoring and control of chemical or biological events for cell detection and sorting for example. Cell detection is generally performed using optical methods such as FACS (Fluorescent Activated Cell Sorting). Flow Cytometry, such as FACS ( Fluorescent Activated Cell Sorting) is the technique used to detect and measure physical and chemical characteristics of a population of cells or particles. This technique is one of the most widespread methods for cell analysis (size, shape, and granularity)

higher-stability

Flow control systems available for microfluidic applications

Multiple flow control technologies are available for sub-milliliter range fluid management. Designing reliable and functional microfluidic systems requires knowledge of the available liquid transfer solutions.

response time pressure pump

Pressure control for better results

Syringe and peristaltic pumps were the first instruments to be used as they were the two available solutions on the market. As demand for microfluidic pumps with higher flow stability, fast response time, versatility and automation capabilities has increased, pressure controllers have become the device of choice. Fluigent offers a wide range of solutions in this area.

With pressure-based pumps. the working principleis to pressurize the sample reservoirs and control the pressure drop between the inlet and the outlet of the microfluidic system.  The responsiveness of the flow rate depends on the responsiveness of the pressure pump.

For more information or a technical discussion

Contact us