• 한국어
  • English
  • Deutsch
Fluigent
  • 微流控研究设备
      • 面向高流量控制的微流控技术
      • 用于进行精确流体控制的微流控解决方案 
      • 用于液滴生成的微流控技术
      • 液滴生产的先进解决方案
      • 适用于器官芯片应用的微流控技术
      • 适用于器官芯片研究的高级解决方案
      • 面向组学应用的微流控技术
      • 先进的组学技术解决方案 
  • 微流控OEM
      • 工业应用
      • 使用F-OEM打造适用于微流控应用的阀自动化 
      • 用于复用的定位显微技术和流量控制
      • OEM技术
      • 比较微流控压力控制器,选择您最理想的终极流体控制系统 
      • 为微流控应用选择OEM压力控制器而非OEM注射泵的五大理由 
      • 工业产品
      • 流体压力控制器
      • OEM微流控组件 
      • 完全定制的微流控设备
  • 微流体博客
    • 微流控微滴生成方法
    • 细胞与组织的微吸技术 
  • 公司
    • 关于我们
    • 团队介绍 
    • 公司新闻
  • 联系我们
Home » Resources » 专业知识 » 白皮书 » Microfluidic white paper – A review of Organ on Chip Technology

Microfluidic white paper - A review of Organ on Chip Technology 

What are Organs-on-Chips (OoC)? How are they built? What are the single- and multi-OoC models currently available? What are the most common applications? In this expert white paper, we provide a comprehensive review of Organ on Chip technology.

A guide to Organs-on-chips (OoC) technology

Download the white paper

* Required field.

Introducing Organs on Chips 

An Organ on a Chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. Organ on Chip models in microfluidically supported biochips offer the possibility to more precisely regulate the environmental conditions critical to the growth of individual cell types. Miniaturized biochips allow for control of nutrition supply and removal of cellular waste products or secondary metabolites accumulating within the culture medium. Furthermore, oxygenation levels, hydrostatic pressure or shear stress can be adjusted to control such aspects as maintenance of cell layers’ barrier integrity and control of cell migration in vitro. 

By reproducing the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable real-time high-resolution imaging and in vitro analysis of the biochemical, genetic, and metabolic activities of living cells in a functional context of tissues and organs. In the context of drug discovery and development, OoC devices should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing, and biomarker identification. 

This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. Therefore, our goal in this review of Organ on Chip technology is to help you learn more about the details of this promising technology, from its theoretical basis and the different technology models in use, the many advantages and alternatives associated with its use, and the state of the art and recent advances, to its various applications in academia and the pharmaceutical industry. 

omi organ models development
guillemet


“We have a collaboration with Fluigent in an ANR with UTC where we want to parallelize organ-on-a-chip systems in order to test different drugs or different concentrations of drugs.”

Nathalie Maubon | CEO HCS Pharma

A review of Organ-on-Chip technology: table of contents

I. What are “Organs-on-chips” (OoC)?

  1. Definition
  2. Applications

II. Why use OoC models?

  1. “Breaking the in vitro impasse”
  2. An alternative to animal models – 3R principle
  3. Advantages of OoC models
  4. Technical challenges

III. What are the current OoC technologies available?

  1. Materials used for OoC devices
  2. OoC layouts classically used to recreate organ functions
  3. Perfusion systems to deliver physiological flow
  4. Mechanical stimulation
  5. Readouts and sensors of physiological responses

IV. What kind of cells are used to create OoC?

  1. Cell lines
  2. Primary cells from human donors
  3. Human iPS (induced pluripotent stem cells)
  4. Fragmented Organoids
  5. Human biopsies

V. What are the current single OoC models available?

  1. Example 1: Lung-on-a-chip – The first OoC
  2. Example 2: Gut-on-a-chip
  3. Example 3: Tumor-on-a-chip

VI. How to combine several OoC to create a “body-on-chip”?

  1. Multiplexing of single OoC
  2. Multiple organs into a single plate (multi-OoC plates)
  3. Challenges of the multi-OoC field

VII. Applications of OoC in academia and pharmaceutical industry

  1. Towards an OoC rather than an in vitro validation experiment?
  2. Drug development (Efficacy and Safety)
  3. Pre-clinical ADME-Tox assay
  4. Personalized medecine

VIII. Conclusion

References

Free content that may be of interest to you

  • 实验应用说明

    Development of a human gut-on-chip to assess the effect of shear stress on intestinal functions

    Read more
  • 微流控细胞生物学

    Why Control Shear Stress in Cell Biology?

    Read more
  • 支持和工具

    Shear Stress Calculator

    Read more
  • Mimic Microphysiological Conditions in Organ-on-a-Chip Studies

    Read more
  • CELL PERFUSION PACK

    The most efficient system for creating high throughput cell perfusion

    Read more
  • Cell perfusion pack

    The perfect set for organ on chip perfusion.

    Read more
  • gut on chip webinar image

    Webinar: Importance of Flow in Organ-on-a-Chip, featuring the Gut-on-a-Chip Model

    Read more
  • 实验应用说明

    Development of a human gut-on-chip to assess the effect of shear stress on intestinal functions

    Read more
  • 实验应用说明

    Endothelial Cell Culture Under Shear Stress Using Omi

    Read more

For more information or a technical discussion

Contact us
Logo fluigent green and blue

67 avenue de Fontainebleau
94 270 Le Kremlin-Bicêtre

微流控研究设备

  • 面向高流量控制的微流控技术
  • 用于液滴生成的微流控技术
  • 适用于器官芯片应用的微流控技术
  • 面向组学应用的微流控技术

微流控OEM

  • 工业应用
  • OEM技术
  • 工业产品

公司

  • 团队介绍 
  • 关于我们
  • 公司新闻
: 联系我们

Legal

  • Terms & Conditions of Sale
  • Legal Terms & Privacy Policy